Final Exam – Finance for Real Estate 2023/2024

- 1. What strategies are available to help ensure that managers are motivated to act in the interest of the shareholders rather than their own interest? Please list two strategies. (8 points)
 - The threat of a hostile takeover
 - Shareholder initiatives Ensure that underperforming managers are fired.
 - Performance-based compensation
- 2. Consider a retailing firm with a net profit margin of 3.5%, sales of €79.2 million, total assets of €44 million, a book value of equity of €18 million and market value of equity of €22 million. (7 points)
 - a. What is the firm's current ROE using the DuPont Identity?

b. If, in addition, the firm increased its sales by 20% (while maintaining this higher profit margin and without changing its assets or liabilities), what would be its ROE?

- a. $3.5 \times 1.8 \times 44/18 = 15.4\%$.
- b. $3.5 \times (1.8*1.2) \times 44/18 = 18.5\%$.
- 3. Consider two securities that pay risk-free cash flows over the next two years and that have the current market prices shown here:

Security	Price Today (€)	Cash Flow in One Year (€)	Cash Flow in Two Years (€)
B1	279	300	0
B2	255	0	300

Suppose a security with cash flows of $\notin 150$ in one year and $\notin 300$ in two years is trading for a price of $\notin 390$. What arbitrage opportunity is available? (10 pt)

There is an arbitrage opportunity because the no-arbitrage price should be $\notin 394.5 (= \notin 279 / 2 + \notin 255)$. One should buy two shares of the security at $\notin 260$ /share and sell one share of B1 and two shares of B2. Total profit would be $\notin 9 (-\notin 390 \times 2 + \notin 279 + \notin 255 \times 2)$.

4. Suppose the interest rate is 7.1% APR with monthly compounding. What is the present value of an annuity that pays €95 every six months for seven years? (10 pt)

7.1% APR with monthly compounding: 7.1% / 12 = 0.59166666667% per month

 $(1.005916667)^6 - 1 = 0.03603$ or 3.603% per 6 months.

Using the PV of an annuity formula with N = 14 payments and C = \notin 95 with r = 3.603% per 6 month interval:

$$PV = \pounds 95 \times \frac{1}{0.03603} \left(1 - \frac{1}{1.03603^{14}} \right) = \pounds 1,030.32$$

5. Assume zero coupon yields on default free securities are as summaried in the following table.

Maturity (years)	1	2	3	4	5
Zero-coupon YTM	4%	4.3%	4.5%	4.7%	4.8%

- a. What is the price of a three-year, default-free security with a face value of €1000 and an annual coupon rate of 4% with coupon paid annually? (7 pt)
- b. What is the yield to maturity for this bond? (8 pt)
 - a. The price of the bond is

$$P = \frac{CPN}{1 + YTM_1} + \frac{CPN}{(1 + YTM_2)^2} + \dots + \frac{CPN + FV}{(1 + YTM_N)^N}$$
$$= \frac{40}{(1 + .04)} + \frac{40}{(1 + .043)^2} + \frac{40 + 1000}{(1 + .045)^3} = 986.58.$$

b. The yield to maturity is

$$P = \frac{CPN}{1 + YTM} + \frac{CPN}{(1 + YTM)^2} + \dots + \frac{CPN + FV}{(1 + YTM)^N}$$

986.58 = $\frac{40}{(1 + YTM)} + \frac{40}{(1 + YTM)^2} + \frac{40 + 1000}{(1 + YTM)^3} \Rightarrow YTM = 4.488\%$

6. A real estate investor is trying to decide between two projects:

Year-End Cash Flows (\$ thousands)					
Project	0	1	2	IRR	
А	-26	15	20	21.2%	
В	-77	39	51	10.6%	

The investor can undertake only one project. If his cost of capital is 5%, use the incremental IRR rule to make the correct decision. (10 pt)

Timeline:

0	1	2
-26	15	20
-77	39	51
	0 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Subtract the cash flows of project A from the cash flows of project B

$$-51 \qquad 24 \qquad 31$$
$$NPV = -\$51 + \frac{\$24}{1 + IRR} + \frac{\$31}{1 + IRR^2}$$

Using an excel spreadsheet to calculate IRR, we find IRR = 4.97%

Since the incremental IRR of 4.97% is less than the cost of capital of 5%, you should take the project A.

7. Bay Properties is considering starting a commercial real estate division. It has prepared the following four-year forecast of free cash flows for this division:

	Year 1	Year 2	Year 3	Year 4
Free Cash Flow	- \$182,000	\$12,000	\$90,000	\$151,000

Assume cash flows after year 4 will grow at 5% per year, forever. If the cost of capital for this division is 11%. What is the value today of this division? (10 pt)

NDU	-\$182,000	\$12,000	\$90,000	$151,000 + \frac{\$151,000(1.05)}{(0.11 - 0.05)}$
	1.11	1.112	1.113	1.114

NPV = -\$163,963.964 + \$9,739.469199 + \$65,807.22432 + \$1,840,164.976 = \$1,751,747.71

8. Real Estate Capital (REC) is acquired in 2012 for a purchase price of \$15.25 per share. REC has 18.5 million shares outstanding, \$45 million in cash, and no debt at the time of the acquisition.

Given a weighted average cost of capital of 11%, and assuming no future growth, what level of perpetual annual free cash flow would justify this acquisition price? (10 pt)

EV = 15.25*18.5 - 45 = \$237.1 million. $EV = FCF/r_wacc \rightarrow FCF = r_wacc*EV = 26.1 million.

9. Consider two real estate mortgage providers, i.e. A and B. Mortgage provider A has 100 mortgages outstanding, each for \$1 million, that it expects will be repaid today. Each mortgage has a 5% probability of default, in which case the mortgage provider is not repaid anything. The chance of default is independent across all the mortgages. Mortgage provider B has only one loan of \$100 million outstanding, which it also expects will be repaid today. It also has a 5% probability of not being repaid. Explain which mortgage provider faces less risk. (10 pt)

The expected payoffs are the same, but A is less risky because the risk of default is indepdent across mortgages which can be diversified away in a portfolio.

10. Consider an equally weighted portfolio of stocks in which each stock has a volatility of 50%, and the correlation between each pair of stocks is 24%. (10 pt)

What is the volatility of the portfolio as the number of stocks becomes arbitrarily large? Avg cov = $50\% \times 50\% \times 24\% = 6\%$ Limit Vol = $(0.06)^{0.5} = 0.2449 = 24.49\%$ (equation 11.12)